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bstract

Power management strategy is as significant as component sizing in achieving optimal fuel economy of a fuel cell hybrid vehicle (FCHV).
e have formulated a combined power management/design optimization problem for the performance optimization of FCHVs. This includes
ubsystem-scaling models to predict the characteristics of components of different sizes. In addition, we designed a parameterizable and near-
ptimal controller for power management optimization. This controller, which is inspired by our stochastic dynamic programming results, can be
ncluded as design variables in system optimization problems. Simulation results demonstrate that combined optimization can efficiently provide
xcellent fuel economy.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Power management strategy and component sizing affect
ehicle performance and fuel economy considerably in hybrid
ehicles because of the multiple power sources and differences
n their characteristics. Furthermore, these two important factors
re coupled—different selection of component sizing should
ome with different design of power management strategy.
herefore, to achieve maximum fuel economy for hybrid vehi-
les, optimal power management and component sizing should
e determined as a combined package. Our research has formu-
ated and solved a combined power management/design (i.e.,
ontrol/plant) optimization problem of a fuel cell hybrid vehicle
FCHV).
Development of the power management strategy is one of
he important tasks in developing hybrid vehicles and relatively

any literatures can be found. Guezennec et al. [1] solved the

Abbreviations: DC/DC, direct current to direct current converter; FCHV, fuel
ell hybrid vehicle; FC-VESIM, fuel cell hybrid vehicle simulation model; PEM,
roton exchange membrane; PWM, pulse width modulator; SDP, stochastic
ynamic programming; SOC, state of charge
∗ Corresponding author. Tel.: +1 734 936 0352; fax: +1 734 764 4256.

E-mail address: minjoong@umich.edu (M.-J. Kim).
1 Tel.: +1 734 936 0352.

m
s
d
t
a
A
fi
n
i
e
t

378-7753/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2006.12.038
on

upervisory control problem of a FCHV as a quasi-static opti-
ization problem and found that hybridization can significantly

mprove the fuel economy of FCHVs. Rodatz et al. [2] used the
quivalent consumption minimization strategy to determine an
ptimal power distribution for a fuel cell/supercapacitor hybrid
ehicle. The concept of equivalent factors in hybrid electric vehi-
les has been described by Sciarretta et al. [3]. In the same
esearch, they also compared their power management result
o deterministic dynamic programming result, which can lead to
global optimality.

Combined optimization problem of power management and
omponent sizing of hybrid vehicles is analogous to a combined
ontrol/plant optimization problem in control theory. Fathy et
l. [4] classified strategies for combined plant/controller opti-
ization into sequential, iterative, bi-level, and simultaneous

trategies. If a plant is optimized first and a controller is then
esigned, it often leads to non-optimal overall system due to
he coupling of plant/controller optimization. Developing scal-
ble subsystem models is essential in this optimization problem.
ssanis et al. [5] proposed a design optimization framework to
nd the best overall engine size, battery pack, and motor combi-

ation in maximizing the fuel economy. For the engine scaling,
n particular, they replaced the linear scaling of experimental
ngine lookup tables with a high-fidelity simulation that predicts
he nonlinear effects of scaling. Fellini et al. [6] presented an

mailto:minjoong@umich.edu
dx.doi.org/10.1016/j.jpowsour.2006.12.038
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Nomenclature

C capacity of battery
d diameter
F Faraday’s number
I current (A)
k motor parameter
m mass (kg)
M molecular mass (kg mol−1)
nfc number of fuel cells
p pressure (Pa) or probability
P power (W)
R gas constant or resistance (�)
T temperature (K)
u control input
v longitudinal speed (m s−1)
V voltage (V)
Vol volume (m3)
w random parameter
W mass flow rate (kg s−1)
x design variable
y mole fraction

Greek letters
Φ non-dimensional compressor diameter
α sensitivity slope in controller
φ relative humidity
γ air specific heat ratio or discount factor
η efficiency
λ excess ratio
ρ density (kg m3)
τ torque (N m)
ω rotational speed (rad s−1)
ψ humidity ratio

Subscripts
a air
amb ambient
an anode
aux auxiliary
batt battery
ca cathode
cm compressor motor
cp compressor
cr corrected
dcdc DC/DC converter
fc fuel cell
hm humidifier
in inlet
m traction motor
out outlet
oc open circuit
rct reacted
req requested
sat saturation
sm supply manifold

st fuel cell stack
t terminal
v vapor
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ptimization algorithm of this problem. Their research provides
good framework for component sizing, but the control opti-
ization was not addressed. Design optimization of FCHVs in

he literature focused mostly on the relative size between battery
nd fuel cell (sometimes referred as the degree of hybridiza-
ion). Ishikawa et al. of Toyota Motor Coporation [7] studied
he effect of size ratios using their FCHV, but did not explain
heir control strategy and optimization procedure. Atwood et al.
8] used ADVISOR, developed by NREL, to study the degree
f hybridization of a FCHV. They changed the ratio of the
uel cell over a fixed total power of powertrain and checked
ow the fuel efficiency varied. In a following paper [9], they
ncluded control variables in their optimization problem for-

ulation. This was one of the earliest publications dealing with
equential control/plant optimization problem of FCHVs despite
hat the controller could not guarantee optimality. Another ref-
rence was published from Argonne National Laboratory [10],
ith an approach similar to [9]. In addition to component sizing
ptimization, Markel et al. [11] summarized design issues such
s cost and volume in choosing types and sizes of the energy
torage system for FCHVs.

Research in the optimization of hybrid vehicles was predom-
nately conducted independently for either component sizing
r control strategy; in rare cases when the two were considered
ogether, control strategies were largely based on heuristic rules,
hich is usually far from true-optimality. This study presents a

ombined power management/design optimization of FCHVs.
he power management algorithm was developed from stochas-

ic dynamic programming motivated basis functions. In other
ords, while the control is not truly optimal, it is optimal in

ts sub-class. The overall problem is then recast into an optimal
arameter problem.

. Fuel cell vehicle model and optimal power
anagement strategy

To study the combined power management/design optimiza-
ion problem, we used the fuel cell hybrid vehicle simulation

odel (FC-VESIM), which was constructed based on the test
ata of a DaimlerChrysler prototype fuel cell vehicle Natrium
12]. The powertrain of Natrium consists of an 82 kW peak elec-
ric drive system, a 40 kW Li-ion battery pack and a 75 kW fuel
ell engine. The prototype vehicle was tested in various condi-
ions to verify its performances in highway driving, city driving,

apid acceleration, and maximum travel range while experimen-
al data are collected from the vehicle components. During the
everal tests on proving ground, more than 200 channels of
ata were collected and used to build the simulation model. In
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ig. 1. Control signal flow in FC-VESIM. The power split ratio between the bat
ell net current request to the DC–DC converter.

ddition to the vehicle, a fuel cell hybrid powertrain test bench
as built. Each subsystem was tested on the bench to obtain
ecessary data to build its dynamic model and efficiency map.

Fig. 1 shows the powertrain schematic of FC-VESIM and
ey control signals for power management. FC-VESIM consists
f several subsystems: driver, fuel cell system, battery, DC–DC
onverter, electric drive, and vehicle dynamics. Considering var-
ous vehicle states – such as power demand, battery state of
harge (SOC), and vehicle speed – the supervisor controller
ends the fuel cell current request to the DC–DC converter;
ends the motor torque request to the electric drive; controls the
egenerative braking ratio. In order to generate the motor torque
equested from the supervisor controller, the inverter draws cur-
ent from the electric DC bus where the battery and the DC–DC
onverter are connected in parallel. The DC–DC converter can
ontrol the current flow into the DC bus, whereas the battery here
s “passively” connected to the DC bus—the difference between
he current draw from the inverter and the current outflow from
he DC–DC converter will be compensated by the passive bat-
ery. Therefore, the power split ratio between the battery and the
uel cell system is achieved by the supervisor controller sending
he fuel cell net current request to the DC–DC converter.

The next step is to design subsystem-scaling models nec-
ssary to predict the respective characteristics of different
ized components. The subsystem-scaling models we built can
enerate subsystem characteristics for each iteration of the opti-
ization process. These characteristics can then be used in the

implified FC-VESIM.
The goal of power management in fuel cell hybrid vehicles

s to minimize fuel consumption while maintaining the bat-
ery SOC by sending adequate current request command to the
C–DC converter. To achieve this goal, optimal power manage-
ent strategy needs to be designed for the supervisor controller

o balance the fuel cell system (FCS) power and the battery
ower. Many power management algorithms in technical litera-
ures were designed by rule-based or heuristic methods. Those
ule-based methods are simple and easy to understand because
hey come from engineering intuition. However, they often lack
ptimality or cycle-beating. Ideally, minimization of fuel con-

umption of hybrid vehicles can be achieved only when the
riving scenario is known a priori. The deterministic dynamic
rogramming technique can accomplish this global optimum.
hen again, the result cannot be realized as a power management

p
b
fi
i

nd the fuel cell system is managed by the supervisor controller sending the fuel

cheme because it is not possible to predict the future driving
cenario.

The power management strategy designed by the stochas-
ic dynamic programming (SDP) approach can overcome these
imitations of existing algorithms [12]. The idea of the infinite
orizon SDP is that if the overall power demand is modeled as a
tochastic process, an optimal controller can be designed based
n the stochastic model. First, the driver power demand is mod-
led as a discrete-time stochastic dynamic process by using a
arkov chain model, which is constructed from standard driv-

ng cycles. In other words, the power demand from the drive at
he next time step depends on the current power demand and
ehicle speed:

pil,j = Pr{w = P
j
dem|Pdem = Pidem, ωwh = ωlwh},

for i, j = 1, 2, . . . , Np, l = 1, 2, . . . , Nω (1)

here the power demand Pdem and the wheel speed ωwh are
uantized into grids of Np and Nω, respectively. Then, for the
iscretized state vector, x = (SOC, ωwh, Pdem), corresponding
ptimal fuel cell current request command, u = Ifc,net,reg, is deter-
ined to minimize the expected cost of hydrogen consumption

nd battery energy usage over infinite horizon:

= lim
N→∞Ewk

{
N−1∑
k=0

γk(WH2,rct +Wsoc)

}
(2)

here 0 < γ < 1 is the discount factor,WH2,rct the reacted hydro-
en mass, and Wsoc penalizes the battery energy use based on
he SOC value. This SDP problem can be either solved by a
olicy iteration or value iteration process. The resulting SDP
ontrol strategy generates optimal fuel cell current request as a
unction of battery SOC, wheel speed, and power demand. The
ontrol strategy achieves high fuel economy while successfully
aintaining battery SOC.
Despite the advantages of the SDP approach, it is compu-

ationally expensive to build tables and get a corresponding
ptimal control for complex dynamic systems. Moreover, com-
onent design variables cannot be included in a standard SDP
roblem formulation. The iterative algorithms solving SDP

roblems need a cost table and a transition probability table,
ut those tables can be constructed only by a vehicle model with
xed component sizes—if we want to change component sizes

n optimization process, we end up getting double loop of time
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ig. 2. Flowchart of combined power management/design optimization problem
DP make this process infeasible.

onsuming iteration process (Fig. 2). This makes iterations for
ifferent system designs even more difficult. These limitations
f the SDP approach, therefore, make it unsuitable for combined
ower management/design optimization problems.

To overcome these limitations of the SDP approach, we devel-
ped a near-optimal controller for optimization process. This
ontroller has an advantage over the SDP—it can be included
s several design variables in the standard optimization process
ecause it is parameterized. On the other hand, because of its
imilarity to the SDP result, the controller has advantage over
euristic methods in that it is near-optimal.

. Optimization Problem Formulation

This section describes how the combined power manage-
ent/design optimization problem was formulated. Section 3.1

xplains how the fuel cell system and the battery are scaled, and
ow the concept of degree of hybridization places restriction
n the amount of active materials in fuel cells and battery. In
ection 3.2, the optimal controller result based on the stochas-

ic dynamic programming is parameterized, so that the power
anagement strategy can be included as design variables in the

ptimization process. The final form of problem statement is
ade in Section 3.3.

.1. Subsystem-scaling models of fuel cell hybrid
owertrain

Although linear scaling is appropriate for predicting system

haracteristics when size deviations from the baseline design are
mall, it becomes less accurate when the deviations are large,
specially for highly nonlinear systems. Therefore, we found
t necessary to develop subsystem-scaling models for fuel cell

a
c
d
(

DP process is applied. Double loops of computationally expensive steps in the

ybrid powertrains that could predict the sizing effects of com-
onents including the number of fuel cells, compressor diameter
nd battery capacity.

.1.1. Fuel cell system-scaling model
We developed a static FCS scaling model to predict how the

esign variables – number of fuel cells and compressor diameter
cale – affect the efficiency characteristics of the fuel cell sys-
em. The fuel cell system consists of the fuel cell stack, which
s a serially layered pack of fuel cells, and the system auxil-
ary components, which include compressor, cooling/heating
evices, and water management systems. For the fuel cell stack,
ecause change in the active cell area requires the complete re-
esign of flow channels, we chose the number of fuel cells as
design variable. Among the auxiliary components, we chose

he compressor diameter scale as a design variable because the
ompressor power is the biggest draw on fuel cell auxiliary
owers.

Since the fuel cell system is the primary power source of
uel cell hybrid vehicles, the fuel cell stack is the core of the
owertrain—it is comparable to the cylinders of the combustion
ngine. Possible design changes of the fuel cell stack are the
umber of fuel cells and the active cell area. By changing them,
e can obtain different characteristics of the fuel cell stack cur-

ent and voltage relation. To build the current–voltage relation
odel, we collected data from the fuel cell system on a test bench

12], did the curve-fitting, and obtained the polarization curve,
hich is shown in Fig. 3. Here, we assumed that the tempera-

ure is maintained at the operating condition (around 75–80 ◦C)

nd ignored the effect of the pressure difference between the
athode and the anode. As a result, the cell voltage (Vcell) is
enoted by the current density (ist) and the system pressure
psys): Vcell = f(ist, psys). We used this equation as the reference of



M.-J. Kim, H. Peng / Journal of Power Sources 165 (2007) 819–832 823

Fig. 3. Fuel cell polarization curve with respect to different levels of cathode
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Wa,ca,in = λO2WO2,rct

yO2,ca
= λO2nfcMO2Ist

4yO2F
(3)
ressure. Changes in the fuel cell stack design do not affect this curve since it is
he property of the cell.

uel cell stack scaling because the polarization curve is the prop-
rty of the fuel cell, which is largely unaffected by cell numbers
f a stack. Theoretically, if the number of fuel cells is changed,
ultiplication of the single cell voltage of the polarization curve
ill be the stack voltage because the cells are serially connected.

t is also easy to change the number of fuel cells because fuel cell
nits can be stacked up without much difficulties. On the other
and, if the fuel cell active area is changed, we should get the
-axis scaled because the unit of the x-axis is the current density
A cm−2). However, in practice, it is not simple to modify the
ctive cell area because it requires re-design of the reactant flow
hannel, which is a complicated and time-consuming process.
oreover, the re-design of the reactant flow channel can influ-

nce the humidity and thermal characteristics of the stack, and
onsequently it may not be guaranteed that the same polarization
urve can be used for the scaled design. Therefore, for practical
esign purpose, only the number of fuel cells (nfc) is chosen as
design variable for the fuel cell stack in this study.

Among the fuel cell auxiliary components, the compressor
raws our most attention in terms of system efficiency, because
he compressor is the most energy-consuming component. From
ur data shown in Fig. 4, the compressor power can be up to 30%
f the fuel cell system stack power, whereas power consumption
y other auxiliary components is relatively not as significant
s that of the compressor. Similar observation was reported by
oettner et al. [13], where the compressor power is up to 93.5%
f the total auxiliary power consumption. Therefore, we chose
he compressor diameter scale as a design variable because the
ompressor is the major draw on auxiliary power. We scaled
ower consumption of other auxiliaries proportional to the ratio
f the number of fuel cell to that of the baseline design.

We developed a static FCS model based on our test data and
he model parameters of the previous study [14]. To reduce the
omputational time of the optimization process, the FCS scal-

ng model eventually will generate simple static maps, which
elate the fuel cell net current to the fuel cell stack voltage, aux-
liary power, and hydrogen fuel consumption. The static FCS

F
d
o

s. fuel cell stack current. The compressor auxiliary power is most influential
etermining the fuel cell net power and fuel cell system efficiency because it
ominates the fuel cell auxiliary power.

caling model takes the stack current as the system input. Since
he stack current determines the amount of reacted oxygen, we
an calculate the required amount of air inflow to the cathode by
ssuming constant excess ratio and mass fraction of the oxygen.
n reality, before we draw net current from the fuel cell system
nd the internal controller starts to drive the compressor motor,
e cannot estimate the fuel cell stack current in advance. How-

ver, since there is no dynamics involved in this scaling model,
ausality is not an issue because all the input–output relations
re stationary one-to-one correspondences.

Fig. 5 illustrates the air supplying system for the fuel cell
athode. No sizing issue is involved in the anode side because
pressurized tank and a control valve are typically used to

upply hydrogen fuel. In this scaling model, therefore, only
he air supplying subsystem will be considered. For a given
tack current, the inlet air to the cathode is calculated by
ssuming constant mass fraction of the oxygen inside the
athode:

WO ,rct = nfcMO2Ist
,

ig. 5. Air supplying subsystem of the fuel cell system. Static compressor model
etermines the amount of the air supply by the compressor from the amount of
xygen reacted in the fuel cell cathode.
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here F is the Faraday number, nfc the number of fuel cells,MO2

he molar mass of oxygen, and λO2 is the oxygen excess ratio
hich is assumed to be maintained at a desired level (λO2 =
). By the conservation of mass, the dry air mass flow at the
athode inlet, supply manifold outlet, and the compressor outlet
re identical at the steady state (Wa,ac,in = Wa,sm,out = Wa,cap), and
he water vapor mass flow at the supply manifold outlet and the
ompressor outlet is the same as well (Wv,sm,out = Wv,cp). The
umidifier provides the water vapor Whm to the inlet air such that
he relative humidity in the cathode is 100% at 80 ◦C. With these
ssumptions, the compressor outlet flow is calculated from:

cp = Wa,cp +Wv,cp = (1 + ψamb)Wa,cp

=
(

1 + Mvφambpsat,amb

Mapa,amb

)
Wa,ca,in

=
(

1 + Mvφambpsat,amb

Mapa,amb

)
λO2nfcMO2Ist

4yO2F
, (4)

here ψamb is the humidity ratio of the atmospheric air, Ma and
v the dry air molar mass and vapor molar mass, respectively,

amb the relative humidity of the ambient air (assumed to be 0.5),
sat,amb the vapor saturation pressure at ambient temperature, and
a,amb is the pressure of the dry atmospheric air.

The key of fuel cell system-scaling model lies in the com-
ressor model. In this scaling model, the compressor is assumed
o operate following a steady-state operating trajectory on the
ompressor map as shown in Fig. 6. This compressor model is
on-causal in that the pressure ratio and the compressor speed
re obtained backwards from the given flow rate. The figure also
uggests that there exists a minimum air flow rate to avoid com-
ressor surging. The compressor torque is derived by using the

hermodynamic equation:

cp = Cp

ωcp

Tamb

ηcp

[(
psm

pamb

)(γ−1)/γ

− 1

]
Wcp, (5)

ig. 6. Compressor operating line on efficiency map. The compressor is operated
ollowing a static operating line, and minimum flow rate is determined to prevent
ompressor surging phenomenon.

Φ

d
c
[

Φ

w
d
c
p

S
l

w
i
p
t
a

r Sources 165 (2007) 819–832

here the compressor efficiency ηcp is given from the efficiency
ap, and the compressor speedωcp and pressure ratio (psm/pamb)

an be obtained by assuming a static operating compressor. The
ompressor power consumption can then be calculated,

cm = VcmIcm = Vcm
τcp

ηcmkt
, (6)

here ηcm is the compressor motor efficiency and kt is the motor
onstant. After getting the compressor power consumption, it is
ubtracted from the FC stack power to obtain the FC net power
nd net current:

net = Pst − (Pcm + Paux)

Vst
= Ist − Pcm + Paux

Vst
, (7)

here other auxiliary power consumption Paux is linearly scaled
y the number of fuel cells from the baseline FCS. In addi-
ion, from the stack current we can calculate the hydrogen fuel
onsumption:

H2,rct = nfcMH2Ist

2F
(8)

y repeating this procedure for different FC stack current levels,
e can obtain simple static maps, which relate the FC stack cur-

ent to the FC net current, the FC stack voltage, and the hydrogen
uel consumption. Since all these relations are stationary one-to-
ne correspondences, we can take the FC net current as the input
f these static maps, so that they can be used in the two-state
C-VESIM model for iteration.

The compressor sizing effect is nonlinear due to its dynamic
nd nonlinear characteristics of compressor map and efficiency.
s explained above, the compressor dynamics is ignored by
sing the static operating trajectory in Fig. 6. For the compressor
caling, it is assumed that the normalized compressor flow rate

is constant for a specific compressor design regardless of its
iameter scale, and that the range of the pressure ratio does not
hange. The normalized compressor flow rate can be expressed
15] as:

= Wcr

π/4ρad2
cpUcp

, Ucp = ωcp
dcp

2
, (9)

here Wcr, ρa, dcp are the corrected compressor flow, the air
ensity, and the compressor diameter, respectively. Ucp is the
ompressor blade tip speed, which is proportional to the com-
ressor speed ωcp. Consequently, Eq. (9) becomes:

Φ = Wcr

π/8ρad3
cpωcp

. (10)

ince we assumed a constant normalized flow rate Φ, the fol-
owing relation is obtained:

Wcr,scaled

Wcr,baseline
=

(
dcp,scaled

dcp,baseline

)3

= x3
cp, (11)

here xcp denotes the compressor diameter scale. As a result,

t is possible to obtain a new flow rate map of the scaled com-
ressor by scaling the x-axis, i.e., the corrected flow indexes of
he baseline compressor flow map by x3

cp. This approach can be
pplied to scale the compressor efficiency map as well.
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ig. 7. Compressor size effect on fuel cell system efficiency. As the compressor
iameter increases, maximum fuel cell net power is increased while the system
fficiency is decreased especially in the low power region.

Fig. 7 shows the compressor diameter sizing effect on the
ystem efficiency map when the number of fuel cells and other
ystem parameters are fixed. The trade-off of compressor sizing
s as follows: a fuel cell system with a smaller compressor has
etter efficiency in the low power range, however, the maximum
uel cell net power is decreased. On the other hand, a fuel cell
ystem with a larger compressor loses efficiency in the lower
ower range, but it can achieve more maximum fuel cell net
ower. The maximum fuel cell net power is determined by the
uel cell net current, which is limited by the compressor size and
haracteristics:

max
fc,net = min

{
Ifc,net

∣∣pca(Ifc,net) = pmax
ca , Ifc,net

∣∣Wcr(Ifc,net)

= Wmax
cr , Ifc,net

∣∣∣∣�Pfc,net

�Ifc,net
< 0

}
, (12)

here pca, Wcr, Pfc,net are the cathode pressure, the corrected
ompressor flow, and the fuel cell net power, respectively.

.1.2. Battery scaling model
A propulsion battery system consists of serially connected

attery cells. The battery system is relatively simple, compared
o a fuel cell system, which has substantial number of auxiliary
omponents and requires a controller to supply hydrogen and
xygen fuels.

A battery pack can be scaled simply according to its number
f cells and the cell capacity, but we chose only the capacity
s a design variable in this study. This allows us to sustain
he nominal voltage of the inverter side. In the configuration
f DaimlerChrysler Natrium FCHV (Fig. 1), the battery pack
erminals are directly connected to the electric DC bus, so the
attery terminal voltage becomes the electric DC bus voltage.
his means that the inverter side voltage will change with the

hanges in the number of battery cells. Since the inverter voltage
hould be maintained in the operating range, it is undesirable to
hange the number of cells without an extra DC–DC converter
or the battery side. The extra DC–DC converter will decrease

w
p
p
c

ig. 8. One resistance battery model. It is simple and enables fast simulation for
ptimization process.

he powertrain efficiency and lead to a complex control prob-
em of the DC bus voltage and the battery SOC. We avoid these
onsequences by fixing the number of battery cells.

We developed a resistance battery model for scaling and opti-
ization purposes using the SAFT lithium-ion battery test data

Fig. 8). The one-state battery model is an equivalent circuit
odel with a voltage source and an internal resistance (Fig. 2).
he terminal voltage of the battery pack, Vbatt, can be denoted
y:

batt = nbatt(Voc − RbattIbatt) , (13)

here nbatt is the number of battery cells; Voc the open cir-
uit voltage, which is a nonlinear function of battery SOC and
emperature; Rbatt is the battery internal resistance, which is a
unction of battery SOC, temperature, and the current direction
charge/discharge). Following the battery test profile [16], the
pen circuit voltage was measured and battery resistance was
alculated for different levels of battery SOC. The battery tem-
erature was assumed to be room temperature, i.e., 25 ◦C. The
attery SOC is defined as:

OC(t) = SOC0 − 1

Cbatt

∫ t

t0

Ibattdt (14)

here Cbatt denotes the battery cell capacity and k is the time
tep.

The characteristics of a battery pack change as its battery
apacity scale xbattCap changes:

xbattCap = Cbatt,scaled

Cbatt,baseline
. (15)

ecause the active material of the cells has the maximum current
ensity limit and the battery cells are connected in series, the
attery pack power and current limits are proportional to xbattCap,
hereas the pack voltage limits remain the same. The scaled

imits are:

{Pmax
batt,scaled, P

min
batt,scaled} = xbattCap{Pmax

batt,baseline, P
min
batt,baseline}

{Imax
batt,scaled, I

min
batt,scaled} = xbattCap{Imax

batt,baseline, I
min
batt,baseline}

,

(16)
here Pmax and Pmin are maximum discharging and charging
ower limits. The battery capacity scaling changes the battery
ack resistance. For the same amount of discharging current, the
ell current density decreases as xbattCap increases, thus the cell
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oltage drop decreases. This is represented by the following:

R+
batt,scaled, R

−
batt,scaled} = 1

xbattCap
{R+

batt,baseline, R
−
batt,baseline},

(17)

here R+ and R− denote discharging and charging resistance,
espectively. The battery should work within its power, current,
nd voltage limits, which are

Pmin
batt , I

min
batt , V

min
batt } < {Pbatt, Ibatt, Vbatt} < {Pmax

batt , P
max
batt , P

max
batt }

(18

.1.3. Degree of hybridization
In a typical process of vehicle powertrain design, the max-

mum peak power to satisfy vehicle performance requirements
drivability) is determined first. For hybrid vehicles, the degree
f hybridization (DOH) should then be determined. For hybrid
lectric vehicles, the DOH is the ratio of the combustion engine
ower to the total powertrain power, and for FCHVs, it would
e the ratio of the FCS net power to the total powertrain power.
n this study however, we need a different definition of DOH
ecause the FCS net power depends not only on the FC stack size
ut also on the flow capacity of its compressor. Since fuel cells
nd battery cells are much more expensive than compressors,
he DOH definition should focus on the active materials.

To define the DOH, we started from the baseline 60 kW fuel
ell system with 381 cells and the baseline 60 kW Li-ion battery
ack with 7.035 Ah. Since these two components have the same
aximum power rate, their combination builds a 0.5 DOH fuel

ell hybrid powertrain. Then, focusing on the active materials,
he degree of hybridization is defined as follows:

nfc,scaled

nfc,baseline
= xDOH

xDOH,baseline
,

Cbatt,scaled

Cbatt,baseline
= 1 − xDOH

1 − xDOH,baseline
,

where xDOH,baseline = Pmax
fcNet,baseline

Pmax
fcNet,baseline + Pmax

Batt,baseline
. (19)

Note that one xDOH value determines both nfc and xbattCap at
he same time. For example, if DOH is 0.6, the number of fuel
ells increases by 20% (0.6/0.5 = 1.2) of the baseline number of
ells (nfc,baseline), while the battery capacity decreases by 20%
0.4/0.5 = 0.8) of the baseline capacity (Cbatt,baseline). If DOH = 1,
he powertrain becomes a “pure fuel cell vehicle” without bat-
ery, and if DOH = 0, then it becomes a “pure battery electric
ehicle.”

One of our optimization goals is to find an optimal “active
aterial distribution” between 0 and 1 of DOH. If xDOH

ncreases, the number of fuel cells will increase. The FCS can
ake advantages of the higher voltage—for the same FC power
emand, the FCS can be operated in a lower current region where

he FCS efficiency is higher. The increase of xDOH, however,
esults in a decrease of battery capacity. This may reduce the
mount of regenerative braking energy due to the decreased
ower limits, and the battery may not be able to assist with

o
g
t
m

Fig. 9. DC/DC converter efficiency.

nough power during rapid acceleration. Such a trade-off of
OH leads to the existence of bounded optimal solutions.

.1.4. DC/DC converter and electric drive
Among the components of the fuel cell hybrid powertrain,

ajor subsystems to be discussed are the DC/DC converter and
he electric drive. We linearly scaled the DC/DC converter effi-
iency curve with respect to the number of fuel cells ratio to that
f the baseline design. It means that the DC/DC converter size is
dependent variable to the fuel cell system size. This assump-

ion is reasonable because the DC/DC converter is a device to
ransfer the fuel cell power to the DC bus, and it has relatively
onsistent and high efficiency, which ranges from 95 up to 99.5%
ith respect to the fuel cell side power (Fig. 9).
Meanwhile, we fixed the size of the electric drive. For opti-

ization problems of hybrid electric vehicles, the electric motor
ize can be considered as a design variable [5]. Because hybrid
lectric vehicles use two propulsion sources—conventional
ngine transmission and electric motor, the split between the
wo can be an optimization problem. However, fuel cell hybrid
ehicles use the electric motor as the only source of propulsion
ower. The motor size, therefore, should be determined at the
arly stage of vehicle powertrain design to satisfy the peak power
equirements.

.2. Power management controller—parameterized
pseudo-SDP controller”

In this study, we used “pseudo-SDP controller” for the
ombined power management/design optimization. The pseudo-
DP controller is a near-optimal controller inspired by the
DP control results. Unlike the original SDP controller, the
seudo-SDP controller uses basis functions observed from SDP
ontrol laws and can be represented with a few variables such
hat they can be used as optimization design variables. Unlike

ther heuristic rule-based algorithms, the pseudo-SDP controller
enerates near-optimal results because its topology (basis func-
ion) is from the optimal SDP controller. The combined power

anagement/design optimization problem becomes a standard
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onlinear optimization problem with several design variables
nd constraints (Fig. 10).

In the stochastic dynamic programming, problem formula-
ion starts from probability modeling of future power demand
y observing standard driving cycles. The idea is to minimize
he cost function over a class of trajectories from an underly-
ng Markov chain driving cycle generator. Unlike deterministic
ynamic programming (DDP), whose result is a set of control
rajectories over the time horizon, the SDP produces a set of opti-

al controls for each state and can be implemented as a full-state
eedback lookup table. Whereas changes in the vehicle power
emand or the battery SOC directly influence the required FC
ower, the vehicle speed variable influences only the probability
istribution of the future vehicle power demand. Therefore, the
hree-state optimal controller can be simplified by eliminating
he vehicle speed state as in

∗
fc,req = f (SOC, vveh, Pdem) ≈ f1(SOC, Pdem). (20)

The SDP controller consists of “layers” of vehicle speed lev-
ls. Our original design [12] used 15 levels of vehicle speeds
anging from 0 to 80 mph. Interestingly, as seen in Fig. 11, it
as noted that contour shapes are very similar to each other
ith the exception of layers near zero. The 20 mph layer was

sed as a standard map in designing a near-optimal “pseudo-SDP
ontroller.”

At a fixed vehicle speed, the SDP controller is parameterized
sing four variables. Fig. 12 illustrates how the original contour

a
l
i
t

ig. 11. Original SDP controller for vehicle speed levels of 6.8, 18.1, 29.4, and 40.7 m
imilar to each other regardless of vehicle speed levels.
anagement strategy and component sizes are represented as design variables
n a standard form of nonlinear optimization process.

s simplified as a set of straight lines. The x and y-axes represent
he battery SOC and vehicle power demand, respectively. As the
attery SOC decreases—or the vehicle power demand increases,
t is apparent that the optimal current request will increase. The

aximum FC current density request (ximax), therefore, takes
lace at the intersection between the lower bound of the SOC
nd the upper bound of the vehicle power demand, i.e., the upper

eft corner of Fig. 12. The profile of the straight-lined contour
s parameterized as an exponential curve with a constant (xα) so
hat the current density command reaches exponentially from 0

ph. Unless the vehicle speed is near zero, the shape of control contour is very
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o ximax:

req = 1 − e−σξ

1 − e−σ
imax,

here ireq is the current density command and ξ is a normalized
istance ranging from 0 to 1. The sensitivity slope (xα) is another
ariable that affects the sensitivity of the control map to the unit
hanges in the battery SOC and vehicle power demand. xα is
lso subject to change largely by the power ratio between the
CS and the battery pack, i.e., degree of hybridization. The unit
f xα is radian, based on the normalized SOC and vehicle power
emand (both range from −1 to 1). Another variable that frames
he pseudo-SDP controller is the battery SOC value when the
ehicle power demand is zero (xstableSOC). If an FCHV stops
nd its engine keeps idling, the battery will be charged until it
eaches xstableSOC. Therefore, it will be the initial battery SOC
alue of a starting vehicle. xstableSOC plays a significant role in
anaging the battery SOC because it is the target SOC value,

o which the near-optimal controller tends to charge the battery
ack. As a result, the values of these four variables – ximax, xσ ,
α, xstableSOC – can determine a unique pseudo-SDP controller.

Two extreme cases of the pseudo-SDP controller are shown

n Fig. 13. If xα is near zero, the FCS will mainly follow the
ehicle power demand as in Fig. 13(a). If, on the other hand, xα
s near π/2, it will try to keep only the battery SOC. Moreover, as
σ becomes large, the controller characteristics will be similar

t
o

t

ig. 13. Extreme cases of pseudo-SDP controller. The controller shape can vary flexi
ainly fuel cell system to follow vehicle power demand (xα = 0, xσ = 1) to (b) “On/Off”

able 1
omparison of Original SDP/Pseudo SDP control result

riving Cycle Original SDP controller P

C

ity UDDS MPGGE 43.8 4
SOC bound (<0.2) 0.12
max FCS rate (<12 KW/s) 12.2a

ighway HWFET MPGGE 43.9 4
SOC bound (<0.2) 0.09
max FCS rate (<12 KW/s) 8.30

A92 MPGGE 34.6 3
SOC bound (<0.2) 0.26a

max FCS rate (<12 KW/s) 11.5 1

a Failed to satisfy subsystem constraints.
ig. 12. Pseudo-SDP controller. Four design variables – xα, xσ , ximax, xstableSOC

uniquely determine one power management strategy.

o those of an “On/Off” controller. Fig. 13(b) shows an example

f an on/off type controller switched by the battery SOC level.

The pseudo SDP controller allows us to easily satisfy subsys-
ems constraints without compromising fuel economy compared

bly such that it can generate from (a) “fuel cell only” controller, which operates
controller, which switch the fuel cell system by battery SOC (xα =π/2, xσ = 100).

seudo SDP Controller

ity cycle optimized Highway cycle optimized LA92 cycle optimized

4.0 43.4 43.7
0.12 0.07 0.11
9.07 10.0 10.1
3.6 43.9 43.1
0.17 0.07 0.14
9.98 10.15 9.41
6.5 35.7 35.9
0.19 0.11 0.18
3.3a 17.0a 11.5
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obtained from the non-causal FCS model. Last but not the least,
we impose a limit for the changing rate of the FC power. The FCS
model used in our study is static, and it does not capture dynamic
M.-J. Kim, H. Peng / Journal of

o the SDP controller. Table 1 shows that the fuel economy
esults of the pseudo SDP controller are comparable to those
f the original SDP controller. In this table, “MPGGE” stands
or the miles per gallon gasoline equivalent (lower heating value
asis), and “SOC bound” means the difference between maxi-
um and minimum battery SOC during a driving cycle (lower

SOC bound” indicates more robustness in maintaining battery
OC upon vehicle power demand), and the maximum fuel cell
ystem power rate in KW/s (“max FCS power rate”) indicates the
ontroller performance in protecting the fuel cell system from
ast load change.

The fuel economy results achieved by the pseudo SDP con-
rollers are comparable to that of the original SDP controller.
n some cases, the pseudo SDP controller result is slightly bet-
er than that of the original SDP controller. This is because the
seudo SDP controller was optimized upon the specific driving
ycle, while the original SDP controller was designed upon the
veraged transition probability map. Although each pseudo SDP
ontroller was optimized for a specific cycle, the performance
f a pseudo SDP controller for other driving scenarios achieved
ood fuel economy as well. In other words, pseudo SDP control
esults are not cycle-beating.

Interesting results were found with the LA92 cycle, which
s characterized by harder accelerations and higher speed than
he UDDS city cycle. Except the LA92-cycle-optimized pseudo
DP controller, other three controllers failed to satisfy the sub-
ystem constraint, either the SOC range limit or the fuel cell
ower rate limit. An advantage of the pseudo SDP controller
ver the original controller is that the parameters of the pseudo
DP controller can be modified easily to satisfy these subsys-

em constraints. Because the infinite horizon SDP controller only
onsiders the probability transition map of a single time step, it
oes not have the capability to check the subsystem states over
ong period of time.

.3. Optimization problem statement

We developed subsystem-scaling models and parameterized
ower management strategy, and they all can be included in
he combined power management/design optimization problem
tatement as follows:

Minimize : f (x) = (fuel consumption)

where x = {ximax, xα, xσ, xstableSOC, xDOH, xcp}

subject to :

g1(x) =
max
k

{SOC(k)}
SOCmax − 1 ≤ 0

g2(x) = SOCmin

min
k

{SOC(k)} − 1 ≤ 0

g3(x) = |SOC(1) − SOC(N)|
�SOCmax − 1 ≤ 0

max
k

{PfcNet(k)}

(21)
g4(x) =
Pmax

fcNet
− 1 ≤ 0

g5(x) =
max
k

{�PfcNet(k)}
�Pmax

fcNet
− 1 ≤ 0

F
z
m
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The first four design variables are assigned for the near-
ptimal controller, as explained in Section 3.1. The degree of
ybridization xDOH determines both the number of fuel cells and
he battery capacity. Since the number of fuel cells is in the order
f hundreds, so its value is assumed continuous. The battery SOC
imit is given by the battery management system. As a conser-
ative target, 0.5 and 0.7 are used for lower and upper bounds of
OC. The difference between initial and final SOC of time hori-
on (�SOC) is limited up to 1.5%. After each simulation, the
uel consumption is adjusted by�SOC assuming linear system
harging efficiency. The FC net power during driving cycles is
ig. 14. Combined power management/design optimization result in time hori-
on of city (above)/highway (below) cycle. Overall, the fuel cell power range is
itigated by the battery while the battery SOC is maintained.
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Table 2
Results of optimal design and constraints

Units Lower
bound

Upper
bound

UDDS city cycle HWFET Highway cycle ECE-EUDC

Power
management
only

Power
management/
design

Power
management
only

Power
management/
design

Power
management/
designb

Control/
Design

x∗
imax A/cm2 0.1 2 0.525 0.525 0.521 0.525 0.521 0.525
x∗
α rad 0 1.57 0.245 0.295 0.748 0.954 0.243 0.356
x∗
α – 0 10 0.938 0.266 2.31 1.25 0.312 1.71
x∗

stableSOC SOC 0.45 0.75 0.619 0.611 0.581 0.582 0.611 0.604
x∗

DOH – 0.2 0.95 0.5a 0.654 0.5a 0.550 0.850 0.622
x∗

cp – 0.5 1.5 1a 0.750 1a 0.866 0.732 0.867
g1 max SOC −0.097 −0.127 −0.149 −0.147 −0.08 −0.114
g2 min SOC −0.024 0 −0.048 −0.026 −0.086 0
g3 �SOC −0.027 −0.367 −0.002 −0.017 +0.99b −0.001
g4 max FCS power −0.445 −0.011 −.433 −0.260 −0.173 −0.031
g5 max FCS power rate −0.051 0 0 0 0 −0.113
f* MPGGE 41.35 48.35 42.90 44.56 49.07 47.56

a

p
t
t
5

m
b
[
p
s

4

g
F
“

Fixed parameters of the baseline design.
b �SOC constraint is moderated (−1.5% <�SOC < 3%).

roblems such as oxygen starvation or compressor choke. Thus,
he net power rate is limited to 12 kW s−1, at which value
he baseline design will reach its maximum net power within
s.

The objective function of this problem depends on nonlinear
aps, which are somewhat noisy. It is difficult to use gradient-
ased optimization algorithms. Therefore, DIRECT algorithm
17] is used. DIRECT is a sampling algorithm, which can reduce
ossibility of converging to local minima in a noisy response
urface.

p
n
t
m

Fig. 15. Comparison of optimization results for
. Optimization results

Table 2 summarizes the optimization results in miles per
allon gasoline equivalent (MPGGE) for three driving cycles:
TP-72 (city), HWFET (highway), and ECE-EUDC. Here
power management only” optimization means that only the

seudo-SDP controller is optimized at fixed baseline compo-
ent sizes whereas “power management and design” includes
he optimization of component sizing in addition to the power

anagement strategy. The “power management and design”

200 s of (a) city cycle (b) highway cycle.
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ig. 16. Optimized controller map and vehicle state trajectories (a) city cycle (b
fficient low power range. The city cycle generates more regenerative braking
ighway cycle.

ptimization result shows 17% better fuel economy than the
power management only” optimization result for the city cycle.
n the other hand, there was relatively small fuel economy

mprovement of 4% for the highway cycle. There is a hard
eceleration at the end of the highway cycle, so the battery SOC
ncreases significantly at the end. When the upper limit of�SOC
onstraint g3(x) was moderated from 1.5% to 3% for the high-
ay cycle, 10% improvement of fuel economy (MPGGE: 49.07)

ould be achieved.
Unlike some strategies that depletes or overcharge the battery,

ur controller demonstrates that it can maintain the battery SOC
ithin limited operating range. In Fig. 14, the optimization result

n time horizon of city and highway cycles was shown. Similar
o the original SDP controller, the pseudo-SDP controller split
he required motor power to the fuel cell and the battery and

aintains the battery SOC.
In Fig. 15, optimization results for city and highway cycles

re compared. The city cycle of Fig. 15(a) has more accelera-
ions/decelerations so the vehicle can capture more regenerative
raking energy. Therefore, the optimized sensitivity slope of the
ity cycle is relatively flat compared to that of the highway cycle,

.e., x∗

α,city < x∗
α,highway (Fig. 16). Fig. 15(b) shows the results for

he first 200 s of highway cycle, in which the vehicle is launch-
ng and then cruising at 50 mph. When the vehicle first launched,

o
b
t

Fig. 17. Optimized (a) fuel cell and (b) b
way cycle. The optimal controller runs the fuel cell system mostly in the more
gy, so its SOC sensitivity slope of the controller is not as steep as that of the

he power demand suddenly increases and the battery helps to
ssist power for the FCS, of which the net power rate is limited.

hen the vehicle cruises, the pseudo-SDP controller runs the
CS “slow and steady” while the battery operates as an energy
uffer to cover the fast dynamics of power demand.

The optimization process downsizes the compressor and
ncreases the DOH. Thus, the FCS efficiency increases in the
ower net power range from 0 to 25 kW, where the optimized FC
ngine primarily operates (Fig. 17). The maximum efficiency of
he optimized FC engine is around 55% where that of the base-
ine design in Fig. 7 is around 50%. Although the downsized
ompressor here reduces the maximum net power of the FCS,
he optimized pseudo-SDP controller successfully runs the FCS
ithin the reduced maximum net power limit. Fig. 17(b) shows

hat even though the increased DOH reduces the battery size,
he optimized battery design can still capture the majority of
egenerative braking energy within its reduced power limit.

If fuel cell vehicles go into production in the near future,
heir degree of hybridization will significantly impact the vehi-
le price due to high manufacturing and material costs of fuel
ells and batteries. Therefore, by examining the effect of DOH

n fuel economy, car manufacturers can determine the trade-off
etween fuel savings and manufacturing costs. Fig. 18 illustrates
he effect of the DOH on fuel economy for the city cycle. To

attery characteristics for city cycle.
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value modeling of a small turbocharged diesel engine, SAE910070.
ig. 18. Effect of degree of hybridization on fuel economy for city cycle.

btain each point of the graph, the DOH value is first set, and then
ther five design variables are optimized to get the maximum
uel economy for the specific value of DOH. The results show
hat the optimal DOH is around 0.654. Compared to the baseline
esign, the number of fuel cells was increased from 381 to 498,
hereas the battery capacity could be decreased from 7.035 to
.87 Ah. As the DOH increases from 0.2 to 0.6, the fuel econ-
my improves because the fuel cell efficiency increases. When
he DOH goes beyond 0.75, the fuel economy drops because
ecreased battery capacity fails to capture the regenerative brak-
ng energy. Similar result was found by Toyota [7] although
hey did not describe if their power management strategy was
ptimized for each level of DOH.

. Conclusions

We suggested a comprehensive and systematic framework
hat makes it possible to optimize power management and
omponent sizing simultaneously for the future design of
CHVs. To achieve that, we essentially formulated a combined
ower management/design optimization problem of a FCHV.
o reduce computational requirement of optimization process,
e designed a near-optimal “pseudo-SDP controller”. Unlike

euristic rule-based algorithms, this pseudo-SDP controller can
enerate near-optimal results due to its similarity to our opti-
al SDP controller. Because the pseudo-SDP controller can be

epresented with only a few variables, it can be therefore eas-

[

[

r Sources 165 (2007) 819–832

ly included as design variables in the optimization process. We
lso presented subsystem-scaling models that can predict the
ffect of sizing parameters on the system efficiency character-
stics. Because the compressor size significantly influences the
verall efficiency of a fuel cell system, we mainly focused on
t for the fuel cell system-scaling model. The combined opti-

ization results show that the optimality lies in: (1) downsizing
he fuel cell compressor; (2) increasing degree of hybridiza-
ion without compromising regenerative braking; (3) employing
orresponding control strategy.
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