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Abstract

Power management strategy is as significant as component sizing in achieving optimal fuel economy of a fuel cell hybrid vehicle (FCHV).
We have formulated a combined power management/design optimization problem for the performance optimization of FCHVs. This includes
subsystem-scaling models to predict the characteristics of components of different sizes. In addition, we designed a parameterizable and near-
optimal controller for power management optimization. This controller, which is inspired by our stochastic dynamic programming results, can be
included as design variables in system optimization problems. Simulation results demonstrate that combined optimization can efficiently provide

excellent fuel economy.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Power management strategy and component sizing affect
vehicle performance and fuel economy considerably in hybrid
vehicles because of the multiple power sources and differences
in their characteristics. Furthermore, these two important factors
are coupled—different selection of component sizing should
come with different design of power management strategy.
Therefore, to achieve maximum fuel economy for hybrid vehi-
cles, optimal power management and component sizing should
be determined as a combined package. Our research has formu-
lated and solved a combined power management/design (i.e.,
control/plant) optimization problem of a fuel cell hybrid vehicle
(FCHV).

Development of the power management strategy is one of
the important tasks in developing hybrid vehicles and relatively
many literatures can be found. Guezennec et al. [1] solved the

Abbreviations: DC/DC, direct current to direct current converter; FCHYV, fuel
cell hybrid vehicle; FC-VESIM, fuel cell hybrid vehicle simulation model; PEM,
proton exchange membrane; PWM, pulse width modulator; SDP, stochastic
dynamic programming; SOC, state of charge
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supervisory control problem of a FCHV as a quasi-static opti-
mization problem and found that hybridization can significantly
improve the fuel economy of FCHVs. Rodatz et al. [2] used the
equivalent consumption minimization strategy to determine an
optimal power distribution for a fuel cell/supercapacitor hybrid
vehicle. The concept of equivalent factors in hybrid electric vehi-
cles has been described by Sciarretta et al. [3]. In the same
research, they also compared their power management result
to deterministic dynamic programming result, which can lead to
a global optimality.

Combined optimization problem of power management and
component sizing of hybrid vehicles is analogous to a combined
control/plant optimization problem in control theory. Fathy et
al. [4] classified strategies for combined plant/controller opti-
mization into sequential, iterative, bi-level, and simultaneous
strategies. If a plant is optimized first and a controller is then
designed, it often leads to non-optimal overall system due to
the coupling of plant/controller optimization. Developing scal-
able subsystem models is essential in this optimization problem.
Assanis et al. [5] proposed a design optimization framework to
find the best overall engine size, battery pack, and motor combi-
nation in maximizing the fuel economy. For the engine scaling,
in particular, they replaced the linear scaling of experimental
engine lookup tables with a high-fidelity simulation that predicts
the nonlinear effects of scaling. Fellini et al. [6] presented an
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Nomenclature
C capacity of battery
d diameter
F Faraday’s number
1 current (A)
k motor parameter
m mass (kg)
M molecular mass (kg mol 1)
Nfe number of fuel cells
p pressure (Pa) or probability
P power (W)
R gas constant or resistance (£2)
T temperature (K)
u control input
v longitudinal speed (ms~")
% voltage (V)
Vol volume (m?)
w random parameter
w mass flow rate (kg s7h
X design variable
y mole fraction
Greek letters
@ non-dimensional compressor diameter
o sensitivity slope in controller
¢ relative humidity
y air specific heat ratio or discount factor
n efficiency
A excess ratio
o density (kg m3)
T torque (N'm)
w rotational speed (rad s™h
v humidity ratio
Subscripts
a air
amb ambient
an anode
aux auxiliary
batt battery
ca cathode
cm compressor motor
cp compressor
cr corrected
dcdc  DC/DC converter
fc fuel cell
hm humidifier
in inlet
m traction motor
out outlet
oc open circuit
rct reacted
req requested
sat saturation
sm supply manifold

st fuel cell stack
t terminal

v vapor

veh vehicle

wh wheel

optimization algorithm of this problem. Their research provides
a good framework for component sizing, but the control opti-
mization was not addressed. Design optimization of FCHVs in
the literature focused mostly on the relative size between battery
and fuel cell (sometimes referred as the degree of hybridiza-
tion). Ishikawa et al. of Toyota Motor Coporation [7] studied
the effect of size ratios using their FCHV, but did not explain
their control strategy and optimization procedure. Atwood et al.
[8] used ADVISOR, developed by NREL, to study the degree
of hybridization of a FCHV. They changed the ratio of the
fuel cell over a fixed total power of powertrain and checked
how the fuel efficiency varied. In a following paper [9], they
included control variables in their optimization problem for-
mulation. This was one of the earliest publications dealing with
sequential control/plant optimization problem of FCHVs despite
that the controller could not guarantee optimality. Another ref-
erence was published from Argonne National Laboratory [10],
with an approach similar to [9]. In addition to component sizing
optimization, Markel et al. [11] summarized design issues such
as cost and volume in choosing types and sizes of the energy
storage system for FCHVs.

Research in the optimization of hybrid vehicles was predom-
inately conducted independently for either component sizing
or control strategy; in rare cases when the two were considered
together, control strategies were largely based on heuristic rules,
which is usually far from true-optimality. This study presents a
combined power management/design optimization of FCHVs.
The power management algorithm was developed from stochas-
tic dynamic programming motivated basis functions. In other
words, while the control is not truly optimal, it is optimal in
its sub-class. The overall problem is then recast into an optimal
parameter problem.

2. Fuel cell vehicle model and optimal power
management strategy

To study the combined power management/design optimiza-
tion problem, we used the fuel cell hybrid vehicle simulation
model (FC-VESIM), which was constructed based on the test
data of a DaimlerChrysler prototype fuel cell vehicle Natrium
[12]. The powertrain of Natrium consists of an 82 kW peak elec-
tric drive system, a 40 kW Li-ion battery pack and a 75 kW fuel
cell engine. The prototype vehicle was tested in various condi-
tions to verify its performances in highway driving, city driving,
rapid acceleration, and maximum travel range while experimen-
tal data are collected from the vehicle components. During the
several tests on proving ground, more than 200 channels of
data were collected and used to build the simulation model. In
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Fig. 1. Control signal flow in FC-VESIM. The power split ratio between the battery and the fuel cell system is managed by the supervisor controller sending the fuel

cell net current request to the DC-DC converter.

addition to the vehicle, a fuel cell hybrid powertrain test bench
was built. Each subsystem was tested on the bench to obtain
necessary data to build its dynamic model and efficiency map.

Fig. 1 shows the powertrain schematic of FC-VESIM and
key control signals for power management. FC-VESIM consists
of several subsystems: driver, fuel cell system, battery, DC-DC
converter, electric drive, and vehicle dynamics. Considering var-
ious vehicle states — such as power demand, battery state of
charge (SOC), and vehicle speed — the supervisor controller
sends the fuel cell current request to the DC-DC converter;
sends the motor torque request to the electric drive; controls the
regenerative braking ratio. In order to generate the motor torque
requested from the supervisor controller, the inverter draws cur-
rent from the electric DC bus where the battery and the DC-DC
converter are connected in parallel. The DC-DC converter can
control the current flow into the DC bus, whereas the battery here
is “passively” connected to the DC bus—the difference between
the current draw from the inverter and the current outflow from
the DC-DC converter will be compensated by the passive bat-
tery. Therefore, the power split ratio between the battery and the
fuel cell system is achieved by the supervisor controller sending
the fuel cell net current request to the DC-DC converter.

The next step is to design subsystem-scaling models nec-
essary to predict the respective characteristics of different
sized components. The subsystem-scaling models we built can
generate subsystem characteristics for each iteration of the opti-
mization process. These characteristics can then be used in the
simplified FC-VESIM.

The goal of power management in fuel cell hybrid vehicles
is to minimize fuel consumption while maintaining the bat-
tery SOC by sending adequate current request command to the
DC-DC converter. To achieve this goal, optimal power manage-
ment strategy needs to be designed for the supervisor controller
to balance the fuel cell system (FCS) power and the battery
power. Many power management algorithms in technical litera-
tures were designed by rule-based or heuristic methods. Those
rule-based methods are simple and easy to understand because
they come from engineering intuition. However, they often lack
optimality or cycle-beating. Ideally, minimization of fuel con-
sumption of hybrid vehicles can be achieved only when the
driving scenario is known a priori. The deterministic dynamic
programming technique can accomplish this global optimum.
Then again, the result cannot be realized as a power management

scheme because it is not possible to predict the future driving
scenario.

The power management strategy designed by the stochas-
tic dynamic programming (SDP) approach can overcome these
limitations of existing algorithms [12]. The idea of the infinite
horizon SDP is that if the overall power demand is modeled as a
stochastic process, an optimal controller can be designed based
on the stochastic model. First, the driver power demand is mod-
eled as a discrete-time stochastic dynamic process by using a
Markov chain model, which is constructed from standard driv-
ing cycles. In other words, the power demand from the drive at
the next time step depends on the current power demand and
vehicle speed:

pit,j = Pr{w = P |Piem = Pl @wh = @y},
fori, j=1,2,...,Np, [=1,2,..., N, 1))

where the power demand Pgem, and the wheel speed wyyp are
quantized into grids of N, and N, respectively. Then, for the
discretized state vector, x=(SOC, wwh, Pdem), corresponding
optimal fuel cell current request command, u = Ifc net reg, is deter-
mined to minimize the expected cost of hydrogen consumption
and battery energy usage over infinite horizon:

N-1
lim E {Zyk(Wﬂz,ra + Wsoc)} 2

N—oowy, =0

J =

where 0 <y <1 is the discount factor, Wh, r the reacted hydro-
gen mass, and W, penalizes the battery energy use based on
the SOC value. This SDP problem can be either solved by a
policy iteration or value iteration process. The resulting SDP
control strategy generates optimal fuel cell current request as a
function of battery SOC, wheel speed, and power demand. The
control strategy achieves high fuel economy while successfully
maintaining battery SOC.

Despite the advantages of the SDP approach, it is compu-
tationally expensive to build tables and get a corresponding
optimal control for complex dynamic systems. Moreover, com-
ponent design variables cannot be included in a standard SDP
problem formulation. The iterative algorithms solving SDP
problems need a cost table and a transition probability table,
but those tables can be constructed only by a vehicle model with
fixed component sizes—if we want to change component sizes
in optimization process, we end up getting double loop of time
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Fig. 2. Flowchart of combined power management/design optimization problem if SDP process is applied. Double loops of computationally expensive steps in the

SDP make this process infeasible.

consuming iteration process (Fig. 2). This makes iterations for
different system designs even more difficult. These limitations
of the SDP approach, therefore, make it unsuitable for combined
power management/design optimization problems.

To overcome these limitations of the SDP approach, we devel-
oped a near-optimal controller for optimization process. This
controller has an advantage over the SDP—it can be included
as several design variables in the standard optimization process
because it is parameterized. On the other hand, because of its
similarity to the SDP result, the controller has advantage over
heuristic methods in that it is near-optimal.

3. Optimization Problem Formulation

This section describes how the combined power manage-
ment/design optimization problem was formulated. Section 3.1
explains how the fuel cell system and the battery are scaled, and
how the concept of degree of hybridization places restriction
on the amount of active materials in fuel cells and battery. In
Section 3.2, the optimal controller result based on the stochas-
tic dynamic programming is parameterized, so that the power
management strategy can be included as design variables in the
optimization process. The final form of problem statement is
made in Section 3.3.

3.1. Subsystem-scaling models of fuel cell hybrid
powertrain

Although linear scaling is appropriate for predicting system
characteristics when size deviations from the baseline design are
small, it becomes less accurate when the deviations are large,
especially for highly nonlinear systems. Therefore, we found
it necessary to develop subsystem-scaling models for fuel cell

hybrid powertrains that could predict the sizing effects of com-
ponents including the number of fuel cells, compressor diameter
and battery capacity.

3.1.1. Fuel cell system-scaling model

We developed a static FCS scaling model to predict how the
design variables — number of fuel cells and compressor diameter
scale — affect the efficiency characteristics of the fuel cell sys-
tem. The fuel cell system consists of the fuel cell stack, which
is a serially layered pack of fuel cells, and the system auxil-
iary components, which include compressor, cooling/heating
devices, and water management systems. For the fuel cell stack,
because change in the active cell area requires the complete re-
design of flow channels, we chose the number of fuel cells as
a design variable. Among the auxiliary components, we chose
the compressor diameter scale as a design variable because the
compressor power is the biggest draw on fuel cell auxiliary
powers.

Since the fuel cell system is the primary power source of
fuel cell hybrid vehicles, the fuel cell stack is the core of the
powertrain—it is comparable to the cylinders of the combustion
engine. Possible design changes of the fuel cell stack are the
number of fuel cells and the active cell area. By changing them,
we can obtain different characteristics of the fuel cell stack cur-
rent and voltage relation. To build the current—voltage relation
model, we collected data from the fuel cell system on a test bench
[12], did the curve-fitting, and obtained the polarization curve,
which is shown in Fig. 3. Here, we assumed that the tempera-
ture is maintained at the operating condition (around 75-80 °C)
and ignored the effect of the pressure difference between the
cathode and the anode. As a result, the cell voltage (Vep) is
denoted by the current density (is) and the system pressure
(Psys): Veell =fUist, Psys). We used this equation as the reference of



M.-J. Kim, H. Peng / Journal of Power Sources 165 (2007) 819-832 823

Fuel Cell Polarization Curves / Pressure Effects

1 T i ; i { : 0.8
] | S S s e UL
e e

R | : : : : : 107
< 085} EirasE TR e e I RPN
= : ; : : | g
& 08f------ AN S L B— — L0855
[l X 1 | 1 [l o
- : frs : : : &
> 0@btheonons e ; 5 femmcns jrrnsas fgemnmay os U
= ' i ' I ' T
= . | . ‘ .
_______ sl - O SRR DR O
© o | | 1 1ou SN 10.55
S e .
: : : : : : 105
06 [------ o e s s e . 1
0.55 E i i E i E 10.45
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Current Density [A/cm?]

Fig. 3. Fuel cell polarization curve with respect to different levels of cathode
pressure. Changes in the fuel cell stack design do not affect this curve since it is
the property of the cell.

fuel cell stack scaling because the polarization curve is the prop-
erty of the fuel cell, which is largely unaffected by cell numbers
of a stack. Theoretically, if the number of fuel cells is changed,
multiplication of the single cell voltage of the polarization curve
will be the stack voltage because the cells are serially connected.
Itis also easy to change the number of fuel cells because fuel cell
units can be stacked up without much difficulties. On the other
hand, if the fuel cell active area is changed, we should get the
x-axis scaled because the unit of the x-axis is the current density
(A cm™2). However, in practice, it is not simple to modify the
active cell area because it requires re-design of the reactant flow
channel, which is a complicated and time-consuming process.
Moreover, the re-design of the reactant flow channel can influ-
ence the humidity and thermal characteristics of the stack, and
consequently it may not be guaranteed that the same polarization
curve can be used for the scaled design. Therefore, for practical
design purpose, only the number of fuel cells (n¢.) is chosen as
a design variable for the fuel cell stack in this study.

Among the fuel cell auxiliary components, the compressor
draws our most attention in terms of system efficiency, because
the compressor is the most energy-consuming component. From
our data shown in Fig. 4, the compressor power can be up to 30%
of the fuel cell system stack power, whereas power consumption
by other auxiliary components is relatively not as significant
as that of the compressor. Similar observation was reported by
Boettner et al. [13], where the compressor power is up to 93.5%
of the total auxiliary power consumption. Therefore, we chose
the compressor diameter scale as a design variable because the
compressor is the major draw on auxiliary power. We scaled
power consumption of other auxiliaries proportional to the ratio
of the number of fuel cell to that of the baseline design.

We developed a static FCS model based on our test data and
the model parameters of the previous study [14]. To reduce the
computational time of the optimization process, the FCS scal-
ing model eventually will generate simple static maps, which
relate the fuel cell net current to the fuel cell stack voltage, aux-
iliary power, and hydrogen fuel consumption. The static FCS
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Fig. 4. Comparison of fuel cell stack power, net power, and auxiliary power
vs. fuel cell stack current. The compressor auxiliary power is most influential
determining the fuel cell net power and fuel cell system efficiency because it
dominates the fuel cell auxiliary power.

scaling model takes the stack current as the system input. Since
the stack current determines the amount of reacted oxygen, we
can calculate the required amount of air inflow to the cathode by
assuming constant excess ratio and mass fraction of the oxygen.
In reality, before we draw net current from the fuel cell system
and the internal controller starts to drive the compressor motor,
we cannot estimate the fuel cell stack current in advance. How-
ever, since there is no dynamics involved in this scaling model,
causality is not an issue because all the input—output relations
are stationary one-to-one correspondences.

Fig. 5 illustrates the air supplying system for the fuel cell
cathode. No sizing issue is involved in the anode side because
a pressurized tank and a control valve are typically used to
supply hydrogen fuel. In this scaling model, therefore, only
the air supplying subsystem will be considered. For a given
stack current, the inlet air to the cathode is calculated by
assuming constant mass fraction of the oxygen inside the
cathode:

ntc Mo, Ist
WOZ,rct - %,
2o, Wi Lo, Mo, I,
Wa,ca’m — 0, WOy, rct — Oy I fc VIO, st (3)
YO,,ca 4y02F
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W S
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=
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Fig.5. Airsupplying subsystem of the fuel cell system. Static compressor model
determines the amount of the air supply by the compressor from the amount of
oxygen reacted in the fuel cell cathode.
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where F is the Faraday number, n. the number of fuel cells, Mo,
the molar mass of oxygen, and Ao, is the oxygen excess ratio
which is assumed to be maintained at a desired level (Ao, =
2). By the conservation of mass, the dry air mass flow at the
cathode inlet, supply manifold outlet, and the compressor outlet
are identical at the steady state (Wy ac,in = Wa sm,out = Wa,cap), and
the water vapor mass flow at the supply manifold outlet and the
compressor outlet is the same as well (Wysm out = Wi,cp). The
humidifier provides the water vapor Wy, to the inlet air such that
the relative humidity in the cathode is 100% at 80 °C. With these
assumptions, the compressor outlet flow is calculated from:

Wep = Waep + Wyop = (1 + Yamp) Waep

_ (1 + Mv¢ambpsat,amb> Wa,ca,in

M pa,amb
_ (1 T Mv¢ambpsat,amb> )\OznfcMOQIst (4)
Mapa,amb 4)’02F

where ¥,mp is the humidity ratio of the atmospheric air, M, and
M, the dry air molar mass and vapor molar mass, respectively,
@amb the relative humidity of the ambient air (assumed to be 0.5),
PDsat.amb the vapor saturation pressure at ambient temperature, and
Paamb 18 the pressure of the dry atmospheric air.

The key of fuel cell system-scaling model lies in the com-
pressor model. In this scaling model, the compressor is assumed
to operate following a steady-state operating trajectory on the
compressor map as shown in Fig. 6. This compressor model is
non-causal in that the pressure ratio and the compressor speed
are obtained backwards from the given flow rate. The figure also
suggests that there exists a minimum air flow rate to avoid com-
pressor surging. The compressor torque is derived by using the
thermodynamic equation:

o &Tamb (Psm )(y—l)/y 1w (5)
P Wep Tep Pamb P
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Fig. 6. Compressor operating line on efficiency map. The compressor is operated
following a static operating line, and minimum flow rate is determined to prevent
compressor surging phenomenon.

where the compressor efficiency 7p is given from the efficiency
map, and the compressor speed w¢p, and pressure ratio (Psm/Pamb)
can be obtained by assuming a static operating compressor. The
compressor power consumption can then be calculated,

TCp
Nemky

Pem = Vemlem = Vem (6)
where 7.y, is the compressor motor efficiency and k; is the motor
constant. After getting the compressor power consumption, it is
subtracted from the FC stack power to obtain the FC net power
and net current:

InetzPst_(Pcm+Paux)=ISt_Pcm+Paux’ (7)
Vit Vit

where other auxiliary power consumption P,y is linearly scaled

by the number of fuel cells from the baseline FCS. In addi-

tion, from the stack current we can calculate the hydrogen fuel

consumption:

nge My, I
2F

By repeating this procedure for different FC stack current levels,
we can obtain simple static maps, which relate the FC stack cur-
rent to the FC net current, the FC stack voltage, and the hydrogen
fuel consumption. Since all these relations are stationary one-to-
one correspondences, we can take the FC net current as the input
of these static maps, so that they can be used in the two-state
FC-VESIM model for iteration.

The compressor sizing effect is nonlinear due to its dynamic
and nonlinear characteristics of compressor map and efficiency.
As explained above, the compressor dynamics is ignored by
using the static operating trajectory in Fig. 6. For the compressor
scaling, it is assumed that the normalized compressor flow rate
@ is constant for a specific compressor design regardless of its
diameter scale, and that the range of the pressure ratio does not
change. The normalized compressor flow rate can be expressed
[15] as:

®)

WH2 Jrct —

Wer dcp

e Uy = w2, 9
 7/ApdiUe cp = @ep ©)

2
where Wer, 0a, dep are the corrected compressor flow, the air
density, and the compressor diameter, respectively. Uecp is the
compressor blade tip speed, which is proportional to the com-
pressor speed wcp. Consequently, Eq. (9) becomes:
W,

& = 7‘3;. (10)

7/ Spadcpa)cp
Since we assumed a constant normalized flow rate @, the fol-
lowing relation is obtained:

3
Wcr,scaled _ < dcp,scaled ) _ )C3 (11)
= = Xgp,
Wcr,baseline P

dcp, baseline

where xp denotes the compressor diameter scale. As a result,
it is possible to obtain a new flow rate map of the scaled com-
pressor by scaling the x-axis, i.e., the corrected flow indexes of
the baseline compressor flow map by x . This approach can be
applied to scale the compressor efﬁc1ency map as well.
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Fig. 7. Compressor size effect on fuel cell system efficiency. As the compressor
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Fig. 7 shows the compressor diameter sizing effect on the
system efficiency map when the number of fuel cells and other
system parameters are fixed. The trade-off of compressor sizing
is as follows: a fuel cell system with a smaller compressor has
better efficiency in the low power range, however, the maximum
fuel cell net power is decreased. On the other hand, a fuel cell
system with a larger compressor loses efficiency in the lower
power range, but it can achieve more maximum fuel cell net
power. The maximum fuel cell net power is determined by the
fuel cell net current, which is limited by the compressor size and
characteristics:

Igife[ = min {Ifc,net |Pca(lfc,net) = ngl‘axa Ifc,net| Wcr(lfc,net)
AP,
— chrmx’ Ifc,net fc,net - 0} ’ (]2)
Ifc,net

where pca, Wer, Prenet are the cathode pressure, the corrected
compressor flow, and the fuel cell net power, respectively.

3.1.2. Battery scaling model

A propulsion battery system consists of serially connected
battery cells. The battery system is relatively simple, compared
to a fuel cell system, which has substantial number of auxiliary
components and requires a controller to supply hydrogen and
oxygen fuels.

A battery pack can be scaled simply according to its number
of cells and the cell capacity, but we chose only the capacity
as a design variable in this study. This allows us to sustain
the nominal voltage of the inverter side. In the configuration
of DaimlerChrysler Natrium FCHV (Fig. 1), the battery pack
terminals are directly connected to the electric DC bus, so the
battery terminal voltage becomes the electric DC bus voltage.
This means that the inverter side voltage will change with the
changes in the number of battery cells. Since the inverter voltage
should be maintained in the operating range, it is undesirable to
change the number of cells without an extra DC-DC converter
for the battery side. The extra DC-DC converter will decrease
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Fig. 8. One resistance battery model. It is simple and enables fast simulation for
optimization process.

the powertrain efficiency and lead to a complex control prob-
lem of the DC bus voltage and the battery SOC. We avoid these
consequences by fixing the number of battery cells.

We developed a resistance battery model for scaling and opti-
mization purposes using the SAFT lithium-ion battery test data
(Fig. 8). The one-state battery model is an equivalent circuit
model with a voltage source and an internal resistance (Fig. 2).
The terminal voltage of the battery pack, Vi, can be denoted
by:

Voatt = batt(Voc — Rbatt loatt) » (13)

where npyy is the number of battery cells; V. the open cir-
cuit voltage, which is a nonlinear function of battery SOC and
temperature; Ry, 1S the battery internal resistance, which is a
function of battery SOC, temperature, and the current direction
(charge/discharge). Following the battery test profile [16], the
open circuit voltage was measured and battery resistance was
calculated for different levels of battery SOC. The battery tem-
perature was assumed to be room temperature, i.e., 25 °C. The
battery SOC is defined as:

1
SOC(1) = S0Cy —

batt

t
/ Toudt (14)

Io

where Cypy denotes the battery cell capacity and k is the time
step.

The characteristics of a battery pack change as its battery
capacity scale xparcap changes:

Cbatt, scaled

XbattCap = 5)

Cbatt,baseline ’
Because the active material of the cells has the maximum current
density limit and the battery cells are connected in series, the
battery pack power and current limits are proportional to Xpa¢Cap-
whereas the pack voltage limits remain the same. The scaled
limits are:

max min _ max min
{Pbatt,scaled’ Pbatt,scalcd} - xbancap{Pbatt,baseline’ Pbatt,baseline}

max min _ max min ’
{ 1 batt,scaled’ I batt, scaled} = XbattCap { I batt,baseline’ I batt,baseline }

(16)

where P"® and P™" are maximum discharging and charging
power limits. The battery capacity scaling changes the battery
pack resistance. For the same amount of discharging current, the
cell current density decreases as xpaycap increases, thus the cell



826 M.-J. Kim, H. Peng / Journal of Power Sources 165 (2007) 819-832

voltage drop decreases. This is represented by the following:

—{R i ine}
batt,baseline’ “‘batt,baseline )’
XbattCap

a7

+ — —
{Rbatt,scaled’ Rbatt, scaled} -

where R* and R~ denote discharging and charging resistance,
respectively. The battery should work within its power, current,
and voltage limits, which are

min ymin min max max max
{Pbatt s Ibat[ s Vbatt } < {Pbatta Ibatts Vbatt} < {Pb‘dtt ) Pbatt s patt }

(18)

3.1.3. Degree of hybridization

In a typical process of vehicle powertrain design, the max-
imum peak power to satisfy vehicle performance requirements
(drivability) is determined first. For hybrid vehicles, the degree
of hybridization (DOH) should then be determined. For hybrid
electric vehicles, the DOH is the ratio of the combustion engine
power to the total powertrain power, and for FCHVs, it would
be the ratio of the FCS net power to the total powertrain power.
In this study however, we need a different definition of DOH
because the FCS net power depends not only on the FC stack size
but also on the flow capacity of its compressor. Since fuel cells
and battery cells are much more expensive than compressors,
the DOH definition should focus on the active materials.

To define the DOH, we started from the baseline 60 kW fuel
cell system with 381 cells and the baseline 60 kW Li-ion battery
pack with 7.035 Ah. Since these two components have the same
maximum power rate, their combination builds a 0.5 DOH fuel
cell hybrid powertrain. Then, focusing on the active materials,
the degree of hybridization is defined as follows:

XDOH
- k)
Nfc, baseline XDOH, baseline

Nfc,scaled

Cbatt, scaled 1 — xpoHn

Cbatt, baseline 1 - XDOH, baseline

max
P fcNet,baseline

+ max

Batt,baseline

(19)

where XpOH,baseline = —Smax
fcNet,baseline

Note that one xpon value determines both ng. and xpacap at
the same time. For example, if DOH is 0.6, the number of fuel
cells increases by 20% (0.6/0.5 = 1.2) of the baseline number of
cells (nfc paseline), While the battery capacity decreases by 20%
(0.4/0.5 =0.8) of the baseline capacity (Cpatt baseline)- T DOH=1,
the powertrain becomes a “pure fuel cell vehicle” without bat-
tery, and if DOH =0, then it becomes a “pure battery electric
vehicle.”

One of our optimization goals is to find an optimal “active
material distribution” between 0 and 1 of DOH. If xpoy
increases, the number of fuel cells will increase. The FCS can
take advantages of the higher voltage—for the same FC power
demand, the FCS can be operated in a lower current region where
the FCS efficiency is higher. The increase of xpoy, however,
results in a decrease of battery capacity. This may reduce the
amount of regenerative braking energy due to the decreased
power limits, and the battery may not be able to assist with

Yy : ; : : : ! ! :
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Fig. 9. DC/DC converter efficiency.

enough power during rapid acceleration. Such a trade-off of
DOH leads to the existence of bounded optimal solutions.

3.1.4. DC/DC converter and electric drive

Among the components of the fuel cell hybrid powertrain,
major subsystems to be discussed are the DC/DC converter and
the electric drive. We linearly scaled the DC/DC converter effi-
ciency curve with respect to the number of fuel cells ratio to that
of the baseline design. It means that the DC/DC converter size is
a dependent variable to the fuel cell system size. This assump-
tion is reasonable because the DC/DC converter is a device to
transfer the fuel cell power to the DC bus, and it has relatively
consistent and high efficiency, which ranges from 95 up t0 99.5%
with respect to the fuel cell side power (Fig. 9).

Meanwhile, we fixed the size of the electric drive. For opti-
mization problems of hybrid electric vehicles, the electric motor
size can be considered as a design variable [5]. Because hybrid
electric vehicles use two propulsion sources—conventional
engine transmission and electric motor, the split between the
two can be an optimization problem. However, fuel cell hybrid
vehicles use the electric motor as the only source of propulsion
power. The motor size, therefore, should be determined at the
early stage of vehicle powertrain design to satisfy the peak power
requirements.

3.2. Power management controller—parameterized
“pseudo-SDP controller”

In this study, we used “pseudo-SDP controller” for the
combined power management/design optimization. The pseudo-
SDP controller is a near-optimal controller inspired by the
SDP control results. Unlike the original SDP controller, the
pseudo-SDP controller uses basis functions observed from SDP
control laws and can be represented with a few variables such
that they can be used as optimization design variables. Unlike
other heuristic rule-based algorithms, the pseudo-SDP controller
generates near-optimal results because its topology (basis func-
tion) is from the optimal SDP controller. The combined power
management/design optimization problem becomes a standard
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nonlinear optimization problem with several design variables
and constraints (Fig. 10).

In the stochastic dynamic programming, problem formula-
tion starts from probability modeling of future power demand
by observing standard driving cycles. The idea is to minimize
the cost function over a class of trajectories from an underly-
ing Markov chain driving cycle generator. Unlike deterministic
dynamic programming (DDP), whose result is a set of control
trajectories over the time horizon, the SDP produces a set of opti-
mal controls for each state and can be implemented as a full-state
feedback lookup table. Whereas changes in the vehicle power
demand or the battery SOC directly influence the required FC
power, the vehicle speed variable influences only the probability
distribution of the future vehicle power demand. Therefore, the
three-state optimal controller can be simplified by eliminating
the vehicle speed state as in
If; req = f(SOC, vyeh, Paem) = f1(SOC, Pdem). (20)

The SDP controller consists of “layers” of vehicle speed lev-
els. Our original design [12] used 15 levels of vehicle speeds
ranging from O to 80 mph. Interestingly, as seen in Fig. 11, it
was noted that contour shapes are very similar to each other
with the exception of layers near zero. The 20 mph layer was
used as a standard map in designing a near-optimal “pseudo-SDP
controller.”

At a fixed vehicle speed, the SDP controller is parameterized
using four variables. Fig. 12 illustrates how the original contour
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Fig. 10. Proposed optimization process using pseudo-SDP controller. Power
management strategy and component sizes are represented as design variables
in a standard form of nonlinear optimization process.

is simplified as a set of straight lines. The x and y-axes represent
the battery SOC and vehicle power demand, respectively. As the
battery SOC decreases—or the vehicle power demand increases,
it is apparent that the optimal current request will increase. The
maximum FC current density request (xjmax), therefore, takes
place at the intersection between the lower bound of the SOC
and the upper bound of the vehicle power demand, i.e., the upper
left corner of Fig. 12. The profile of the straight-lined contour
is parameterized as an exponential curve with a constant (xy) so
that the current density command reaches exponentially from O
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80
X
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c
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£
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Fig. 11. Original SDP controller for vehicle speed levels of 6.8, 18.1, 29.4, and 40.7 mph. Unless the vehicle speed is near zero, the shape of control contour is very

similar to each other regardless of vehicle speed levels.
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where ireq is the current density command and £ is a normalized
distance ranging from O to 1. The sensitivity slope (x,) is another
variable that affects the sensitivity of the control map to the unit
changes in the battery SOC and vehicle power demand. x, is
also subject to change largely by the power ratio between the
FCS and the battery pack, i.e., degree of hybridization. The unit
of x4 is radian, based on the normalized SOC and vehicle power
demand (both range from —1 to 1). Another variable that frames
the pseudo-SDP controller is the battery SOC value when the
vehicle power demand is zero (xsaplesoc). If an FCHV stops
and its engine keeps idling, the battery will be charged until it
reaches xgplesoc. Therefore, it will be the initial battery SOC
value of a starting vehicle. xggaplesoc plays a significant role in
managing the battery SOC because it is the target SOC value,
to which the near-optimal controller tends to charge the battery
back. As a result, the values of these four variables — Xjmax, Xo»
Xo» XstablesSOC — can determine a unique pseudo-SDP controller.

Two extreme cases of the pseudo-SDP controller are shown
in Fig. 13. If x4 is near zero, the FCS will mainly follow the
vehicle power demand as in Fig. 13(a). If, on the other hand, x,
is near r/2, it will try to keep only the battery SOC. Moreover, as
Xy becomes large, the controller characteristics will be similar
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Fig. 12. Pseudo-SDP controller. Four design variables — Xy, X5, Ximax» XstableSOC
— uniquely determine one power management strategy.

to those of an “On/Off” controller. Fig. 13(b) shows an example

of an on/off type controller switched by the battery SOC level.
The pseudo SDP controller allows us to easily satisfy subsys-

tems constraints without compromising fuel economy compared

Current Control
[Afem?2]

0.8

Power
Demand

100 0.4
[KW]

5
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Fig. 13. Extreme cases of pseudo-SDP controller. The controller shape can vary flexibly such that it can generate from (a) “fuel cell only” controller, which operates
mainly fuel cell system to follow vehicle power demand (xq =0, x5 = 1) to (b) “On/Off” controller, which switch the fuel cell system by battery SOC (xy = 71/2, x5 = 100).

Table 1
Comparison of Original SDP/Pseudo SDP control result

Driving Cycle Original SDP controller Pseudo SDP Controller
City cycle optimized Highway cycle optimized LA92 cycle optimized
City UDDS MPGGE 438 44.0 434 43.7
SOC bound (<0.2) 0.12 0.12 0.07 0.11
max FCS rate (<12 KW/s) 12.22 9.07 10.0 10.1
Highway HWFET MPGGE 439 43.6 439 43.1
SOC bound (<0.2) 0.09 0.17 0.07 0.14
max FCS rate (<12 KW/s) 8.30 9.98 10.15 9.41
LA92 MPGGE 34.6 36.5 35.7 359
SOC bound (<0.2) 0.26* 0.19 0.11 0.18
max FCS rate (<12 KW/s) 11.5 13.32 17.0% 115

2 Failed to satisfy subsystem constraints.
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to the SDP controller. Table 1 shows that the fuel economy
results of the pseudo SDP controller are comparable to those
of the original SDP controller. In this table, “MPGGE” stands
for the miles per gallon gasoline equivalent (lower heating value
basis), and “SOC bound” means the difference between maxi-
mum and minimum battery SOC during a driving cycle (lower
“SOC bound” indicates more robustness in maintaining battery
SOC upon vehicle power demand), and the maximum fuel cell
system power rate in KW/s (“max FCS power rate”’) indicates the
controller performance in protecting the fuel cell system from
fast load change.

The fuel economy results achieved by the pseudo SDP con-
trollers are comparable to that of the original SDP controller.
In some cases, the pseudo SDP controller result is slightly bet-
ter than that of the original SDP controller. This is because the
pseudo SDP controller was optimized upon the specific driving
cycle, while the original SDP controller was designed upon the
averaged transition probability map. Although each pseudo SDP
controller was optimized for a specific cycle, the performance
of a pseudo SDP controller for other driving scenarios achieved
good fuel economy as well. In other words, pseudo SDP control
results are not cycle-beating.

Interesting results were found with the LA92 cycle, which
is characterized by harder accelerations and higher speed than
the UDDS city cycle. Except the LA92-cycle-optimized pseudo
SDP controller, other three controllers failed to satisfy the sub-
system constraint, either the SOC range limit or the fuel cell
power rate limit. An advantage of the pseudo SDP controller
over the original controller is that the parameters of the pseudo
SDP controller can be modified easily to satisfy these subsys-
tem constraints. Because the infinite horizon SDP controller only
considers the probability transition map of a single time step, it
does not have the capability to check the subsystem states over
long period of time.

3.3. Optimization problem statement

We developed subsystem-scaling models and parameterized
power management strategy, and they all can be included in
the combined power management/design optimization problem
statement as follows:

Minimize : f(x) =

where x = {X;jmax, Xa» Xo» XstableSOC> XDOH Xcp}
max{SOC(k)}

(fuel consumption)

g1(%) = ~1<0

Socmin
oX)=—c——>--1=<0
mkm{SOC(k)}

ISOC(1) — SOC(N)|
83(x) = ASOCHEX -1<0

max{ PreNet(k)}

max
P, fcNet

max{A Pgener(k)}

max
AP fcNet

21

subject to :

g4(x) = —1=0

g5(x) = -1<0

The first four design variables are assigned for the near-
optimal controller, as explained in Section 3.1. The degree of
hybridization xpoy determines both the number of fuel cells and
the battery capacity. Since the number of fuel cells is in the order
of hundreds, so its value is assumed continuous. The battery SOC
limit is given by the battery management system. As a conser-
vative target, 0.5 and 0.7 are used for lower and upper bounds of
SOC. The difference between initial and final SOC of time hori-
zon (ASOC) is limited up to 1.5%. After each simulation, the
fuel consumption is adjusted by ASOC assuming linear system
charging efficiency. The FC net power during driving cycles is
obtained from the non-causal FCS model. Last but not the least,
we impose a limit for the changing rate of the FC power. The FCS
model used in our study is static, and it does not capture dynamic
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Fig. 14. Combined power management/design optimization result in time hori-
zon of city (above)/highway (below) cycle. Overall, the fuel cell power range is
mitigated by the battery while the battery SOC is maintained.
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Table 2
Results of optimal design and constraints
Units Lower Upper UDDS city cycle HWEFET Highway cycle ECE-EUDC
bound bound
Power Power Power Power Power Control/
management management/ management management/ management/ Design
only design only design design®
XF A/cm? 0.1 2 0.525 0.525 0.521 0.525 0.521 0.525
x5 rad 0 1.57 0.245 0.295 0.748 0.954 0.243 0.356
x5 - 0 10 0.938 0.266 2.31 1.25 0.312 1.71
Xiaesoc  SOC 0.45 0.75 0.619 0.611 0.581 0.582 0.611 0.604
XDou - 0.2 0.95 0.5% 0.654 0.5% 0.550 0.850 0.622
X - 0.5 1.5 1? 0.750 1? 0.866 0.732 0.867
81 max SOC —0.097 —0.127 —0.149 —0.147 —0.08 —0.114
F) min SOC —0.024 0 —0.048 —0.026 —0.086 0
83 ASOC —0.027 —0.367 —0.002 —0.017 +0.99° —0.001
g4 max FCS power —0.445 —-0.011 —.433 —0.260 —-0.173 —0.031
g5 max FCS power rate —0.051 0 0 0 0 —0.113
f MPGGE 41.35 48.35 42.90 44.56 49.07 47.56

? Fixed parameters of the baseline design.
b ASOC constraint is moderated (—1.5% < ASOC < 3%).

problems such as oxygen starvation or compressor choke. Thus,
the net power rate is limited to 12kW s~ at which value
the baseline design will reach its maximum net power within
S5s.

The objective function of this problem depends on nonlinear
maps, which are somewhat noisy. It is difficult to use gradient-
based optimization algorithms. Therefore, DIRECT algorithm
[17]is used. DIRECT is a sampling algorithm, which can reduce
possibility of converging to local minima in a noisy response
surface.

-==--r- Qo

S PR

Power [KW]

550

4. Optimization results

Table 2 summarizes the optimization results in miles per
gallon gasoline equivalent (MPGGE) for three driving cycles:
FTP-72 (city), HWFET (highway), and ECE-EUDC. Here
“power management only” optimization means that only the
pseudo-SDP controller is optimized at fixed baseline compo-
nent sizes whereas “power management and design” includes
the optimization of component sizing in addition to the power
management strategy. The “power management and design”
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Fig. 15. Comparison of optimization results for 200 s of (a) city cycle (b) highway cycle.
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efficient low power range. The city cycle generates more regenerative braking energy, so its SOC sensitivity slope of the controller is not as steep as that of the

highway cycle.

optimization result shows 17% better fuel economy than the
“power management only” optimization result for the city cycle.
On the other hand, there was relatively small fuel economy
improvement of 4% for the highway cycle. There is a hard
deceleration at the end of the highway cycle, so the battery SOC
increases significantly at the end. When the upper limit of ASOC
constraint g3(x) was moderated from 1.5% to 3% for the high-
way cycle, 10% improvement of fuel economy (MPGGE: 49.07)
could be achieved.

Unlike some strategies that depletes or overcharge the battery,
our controller demonstrates that it can maintain the battery SOC
within limited operating range. In Fig. 14, the optimization result
in time horizon of city and highway cycles was shown. Similar
to the original SDP controller, the pseudo-SDP controller split
the required motor power to the fuel cell and the battery and
maintains the battery SOC.

In Fig. 15, optimization results for city and highway cycles
are compared. The city cycle of Fig. 15(a) has more accelera-
tions/decelerations so the vehicle can capture more regenerative
braking energy. Therefore, the optimized sensitivity slope of the
city cycle is relatively flat compared to that of the highway cycle,
1.e., X3, ity < Xg highway (Fig- 16). Fig. 15(b) shows the results for
the first 200 s of highway cycle, in which the vehicle is launch-
ing and then cruising at 50 mph. When the vehicle first launched,
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the power demand suddenly increases and the battery helps to
assist power for the FCS, of which the net power rate is limited.
When the vehicle cruises, the pseudo-SDP controller runs the
FCS “slow and steady” while the battery operates as an energy
buffer to cover the fast dynamics of power demand.

The optimization process downsizes the compressor and
increases the DOH. Thus, the FCS efficiency increases in the
lower net power range from 0 to 25 kW, where the optimized FC
engine primarily operates (Fig. 17). The maximum efficiency of
the optimized FC engine is around 55% where that of the base-
line design in Fig. 7 is around 50%. Although the downsized
compressor here reduces the maximum net power of the FCS,
the optimized pseudo-SDP controller successfully runs the FCS
within the reduced maximum net power limit. Fig. 17(b) shows
that even though the increased DOH reduces the battery size,
the optimized battery design can still capture the majority of
regenerative braking energy within its reduced power limit.

If fuel cell vehicles go into production in the near future,
their degree of hybridization will significantly impact the vehi-
cle price due to high manufacturing and material costs of fuel
cells and batteries. Therefore, by examining the effect of DOH
on fuel economy, car manufacturers can determine the trade-off
between fuel savings and manufacturing costs. Fig. 18 illustrates
the effect of the DOH on fuel economy for the city cycle. To
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Fig. 17. Optimized (a) fuel cell and (b) battery characteristics for city cycle.
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Fuel Economy vs. Degree of Hybridization (City Cycle)
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Fig. 18. Effect of degree of hybridization on fuel economy for city cycle.

obtain each point of the graph, the DOH value is first set, and then
other five design variables are optimized to get the maximum
fuel economy for the specific value of DOH. The results show
that the optimal DOH is around 0.654. Compared to the baseline
design, the number of fuel cells was increased from 381 to 498,
whereas the battery capacity could be decreased from 7.035 to
4.87 Ah. As the DOH increases from 0.2 to 0.6, the fuel econ-
omy improves because the fuel cell efficiency increases. When
the DOH goes beyond 0.75, the fuel economy drops because
decreased battery capacity fails to capture the regenerative brak-
ing energy. Similar result was found by Toyota [7] although
they did not describe if their power management strategy was
optimized for each level of DOH.

5. Conclusions

We suggested a comprehensive and systematic framework
that makes it possible to optimize power management and
component sizing simultaneously for the future design of
FCHVs. To achieve that, we essentially formulated a combined
power management/design optimization problem of a FCHV.
To reduce computational requirement of optimization process,
we designed a near-optimal “pseudo-SDP controller”. Unlike
heuristic rule-based algorithms, this pseudo-SDP controller can
generate near-optimal results due to its similarity to our opti-
mal SDP controller. Because the pseudo-SDP controller can be
represented with only a few variables, it can be therefore eas-

ily included as design variables in the optimization process. We
also presented subsystem-scaling models that can predict the
effect of sizing parameters on the system efficiency character-
istics. Because the compressor size significantly influences the
overall efficiency of a fuel cell system, we mainly focused on
it for the fuel cell system-scaling model. The combined opti-
mization results show that the optimality lies in: (1) downsizing
the fuel cell compressor; (2) increasing degree of hybridiza-
tion without compromising regenerative braking; (3) employing
corresponding control strategy.
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